E-ISSN 2090-0503 | ISSN 1687-7497
 

Original Research 


EFFECT OF CD AND ZN INTERACTION ON REACTIVE OXYGEN SPECIES AND ANTIOXIDANT MACHINERY OF BROAD BEAN PLANTS (VICIA FABA L)

Amel A. Tammam, Maysa M. Hatata, Ola A. Sadek.

Cited by (1)

Abstract
The effect of interaction of 50 and 100 然 concentrations of Cd, a non-essential element and 50, 100, 150, and 200 然 concentrations of Zn; an essential micronutrient on growth, physiological, biochemical and molecular processes in Vicia faba L. were studied to evaluate the possible protective role of Zn against Cd toxicity. Treatment with 100 然 Zn and Cd alone caused significant increase in electrolyte leakage percent (ELP), lipid peroxidation and hydrogen peroxide content. Cadmium at 100 弮M concentration increased the activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase but decreased those of glutathione reductase and glutathione S-transferase. On the other hand, under these conditions, thiol content enhanced oxidation of ascorbate (AsA) to dehydroascorbate (DHA) and glutathione (GSH) to glutathione disulfide (GSSG); a clear indication of oxidative stress. The 100 然 Cd treatments, reduced total phenolic content in the roots and shoots of the plant, but Zn application on the contrary enhanced the accumulation of phenolic compounds in the tested organs. In addition, 帢-tocopherol increased in the roots and shoots at 100 然 Cd and 100 然 Zn. Supplementation of zinc at (200 弮M) to Cd at (100 弮M) effectively restored thiols, inhibited oxidation of AsA and GSH thus maintained the redox molecules in reduced form. The effect of Cd at100弮M cause a slight induction of ascorbate peroxidase (APX, E.C. 1.11.1.11) but inhibition of glutathione reductase (GR, E.C. 1.6.4.2), enzymes of the ascorbateglutathione cycle (AGC). Zn supplementation not only restored but enhanced the functional activity of all the AGC enzymes (APX and GR). Zn application increased Glutathione-S- transferase (GST, E.C.2.5.1.18) activity. Treatments of Zn-alone did not change the above investigated parameters, but, total phenolic content and 帢-tocopherol increased in the roots and shoots at 100 然 Cd. These results clearly indicated a protective role of Zn in modulating the redox status of the plant system through the antioxidant pathway AGC, AsA and GSH enzymes to combating Cd induced oxidative stress.

Key words: Antioxidants, Cadmium, Zinc, Vicia faba


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Amel A. Tammam
Articles by Maysa M. Hatata
Articles by Ola A. Sadek
on Google
on Google Scholar


REFERENCES
Aravind P, Prasad MNV. 2003. Zinc alleviates cadmium induced oxidative stress in Ceratophyllum demersum L.: a free floating fresh water macrophyte. Plant Physiol. Biochem., 41: 391397.
Aravind P, Prasad MNV. 2005.CadmiumZinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistryand molecular toxicology. Braz. J. Plant Physiol.,17(1): 3-20. [DOI via Crossref]   
Asada K. 1992. Ascorbate peroxidase - a hydrogen peroxide scavenging enzyme in plants. Physiol. Plantarum, 85(2): 235241. [DOI via Crossref]   
Bagci SA, Ekiz H, Yilmaz A, Cakmak I. 2007. Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in central Anatolia. J. Agro. Crop Sci., 193(3): 198206.
Balestrasse K, Gallego SM, Tomaro ML. 2005. Cadmium toxicity in plants. Braz. J. Plant Physiol.,17(1): 21-34.
Balestrasse K, Gardey L, Gallego SM, Tomaro ML. 2001. Response of antioxidant defense system in soybean nodules and roots subjected to cadmium stress. Func. Plant Biol. 28(6): 497-504.
Beyer WF Jr, Fridovich I. 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem., 161(2): 559566.
Cakmak I, Braum HJ. 2001. Genotypic variation for zinc efficiency. In: "Applicationof Physiology in Wheat Breeding, (Renolds MP OrtizMonasterio JI, Mac-Nab A. Ed.)". DF. CIMMYT Mexico, pp. 183-199.
Cakmak I, Marschner H. 1998b. Enhanced superoxide radical production in roots of Zndeficient plants. J. Exp. Bot., 39(10): 1449- 1460.
Cakmak I, Marschner H. 1998a. Increase in membrane permeability and exudation in roots of Zn-deficient plants. J. Plant Physiol., 132(3): 356- 361.
Cakmak I. 2000. Possible roles of zinc in protecting plant cells damage by reactive oxygen species. New Phytol.,146: 185-205.
Casano LM, G籀mez LD, Lascano HR, Gonz獺lez CA, Trippi VS. 1997. Inactivation and degradation of Cu/ Zn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol., 38(4): 433-440.
Chen X, Wang J, Shi Y, Zhao MQ, Chi GY. 2011. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Bot. Stud., 52(1): 41-46.
Chugh LK, Sawhney SK. 1999. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol. Biochem., 37(4): 297- 303.
De Gara L, Paciolla C, De Tullio MC, Motto M, Arrigioni O. 2000. Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species. Physiol.Plantarum,109(1): 713. [DOI via Crossref]   
de Pinto MC, Francis D, De Gara L. 1999. The redox state of asscorbate-dehydroascorbate pairs a specific sensor of cell division in tobacco BY-Z cells. Protoplasma, 209(1-2): 90-97.
Demidchik V, Sokolik A, Yurin V. 1997. The effect of Cu2+ ion transport systems of the plant cell plasmalemma. Plant Physiol., 114(4): 1313- 1325.
Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp.Bot., 32(1): 93101. [DOI via Crossref]   
Dionisio-Sese ML, Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci., 135(1): 19.
Dra翹kiewicz M, Baszyski T. 2005. Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, as related to protection mechanisms. J. Plant Physiol., 162(9): 1013- 1021.
Faller P, Kienzler K, Krieger-Liszkay A. 2005. Mechanism of Cd2+ toxicity: Cd2+inhibited photoactivation of photosystem II by competitive binding to the essential Ca2+ site. Biochim. Biophys Acta,1706(1-2): 158-164.
Foyer CH. 1993. Ascorbic acid. In: "Antioxidants in Higher Plants, (Alscher RG, Hess JL. eds)". Boca Raton, FL: CRC Press, pp. 3158.
Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem.,48(12): 909930.
Gossett DR, Millhollon EP, Lucas MC. 1994. Antioxidant response to NaCl stress in salt tolerant and salt sensitive cultivars of cotton. Crop Sci., 34(3): 706-714.
Grat瓊o PL, Monteiro CC, Rossi ML, Martinelli AP, Peres LEP, Medici LO, Lea PJ, Azevedo RA. 2009. Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium Environ. Exp. Bot., 67(2): 387394.
Griffith O. 1980. Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinyl pyridone. Anal Biochem., 106(1): 207-212.
Halliwell B, Foyer CH. 1978. Properties and physical function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta, 139(1): 917. [DOI via Crossref]    [Pubmed]   
Hassan MJ, Zhang G, Wu F, Wei K, Chen Z. 2005. Zinc alleviate growth inhibition and oxidative stress caused by cadmium in rice. J. Plant Nutr. Soil Sci.,168(2): 255261.
Horemans N, Foyer CH, Potters G, Asard H. 2000. Ascorbate functionand associated transport systems in plants. Plant Physiol. Biochem.,38(7-8): 531 540.
Jozefczak M, Remans T, Vangronsveld J, Cuypers A. 2012. Glutathione is a key player in metalinduced oxidative stress defenses. Int. J. Mol. Sci., 13(3): 31453175.
Jung GCH, Maeder V, Funk F, Frey B, Sticher H, Frosserd E. 2003. Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant Soil, 252(2): 301-312. [DOI via Crossref]   
Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science, 284(5414): 654-657. [DOI via Crossref]    [Pubmed]   
Kiv癟ak B, Mert T. 2001. Quantitative determination of [alpha]-tocopherol in Arbutus unedo by TLCdensitometry and colorimetry. Fitoterapia, 72(6): 656-661. [DOI via Crossref]   
Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB. 2013. Modulation of antioxidant machinery in 簣- tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma, 250(5): 1079-1089. [DOI via Crossref]    [Pubmed]   
Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH. 2007. Simultaneous overexpression of both Cu Zn superoxide dismutase and ascorbate peroxides in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J. Plant Physiol.; 164(12): 1626-1638.
Liu D, Jiang W, Gao X. 2003. Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biol. Plantarum, 47(1): 79- 83. [DOI via Crossref]   
Luna CM, Gonzalez CA, Trippi VS. 1994. Oxidative damage caused by excess of copper in oat leaves. Plant Cell Physiol., 35(1): 11-15.
Maeda H, Song W, Sage TL, DellaPenna D. 2006. Tocopherols play a crucial role in low temperature adaptation and phloem loading in Arabidopsis. Plant Cell, 18(10): 27102732. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
Mannervik B, Guthenberg C. 1981. Glutathione transferase (Human placenta). Methods Enzymol., 77: 231-235.
Marques TCLL, Soares AM. 2011. 2011. Antioxidant system of ginseng under stress by cadmium. Sci. Agri., 68(4): 482-488.
McLaughlin MJ, Parker DR, Clarke JM. 1999. Metals and micronutrients food safety issues. Field Crop. Res., 60(1): 143163.
Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MN. 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa onnieri L. Plant Physiol. Bioch.,44(1): 25-37.
Miszalski Z, Slesak I, Niewiadomska E, BaczekKwinta R, Luttge U, Ratajczak R. 1998. Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthum crystallinum L. Plant Cell Environ., 21(2): 169-179.
Molina A, Bueno P, Mar穩n MC, Rodr穩guez-Rosales MP, Belver A, Venema K, Donaire JP. 2002. Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytol., 156: 409-415.
Munn矇-Bosch S, Alegre L. 2002. The function of tocopherol and tocotrienols in plants. Crit. Rev. Plant Sci., 21(1): 3157.
Nagalakshmi N, Prasad MN. 2001. Reponses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci.,160(2): 291299.
Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate- specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5): 867880.
Ngayila N, BotineauBaudu M, Basly JP. 2009. Effect of low concentrations of copper and cadmium on somatic and photosynthetic endpoints: A chemometric approach. Ecol. Indicat., 9(2): 307- 312. [DOI via Crossref]   
Noctor G, Ana-Carolina M, Lise Jouanin A, Kunert KJ, Rennenberg H, Foyer HC. 1998. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot., 49(321): 623647. [DOI via Crossref]   
Paradiso A, Berardino R, de Pinto MC, Sanit di Toppi L, Storelli MM, Tommasi F, De Gara L. 2008. Increase in ascorbateglutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol., 49: 362 374.
Patterson BD, Payne LA, Chen YZ, Graham D. 1984. An inhibitor of catalase induced by cold chilling-sensitive plants. Plant Physiol., 76(4): 10141018.
Polidoros AN, Scandalios JG. 1999. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferasegene expression in maize (Zea mays L.). Physiol. Plantarum, 106: 12-120.
Powell SR. 2000. The antioxidant properties of zinc. J. Nutr, 130(5S Suppl): 1447S- 1454S.
Prasad MNV. 1995. Cadmium toxicity and tolerance to vascular plants. Environ. Exp. Bot., 35: 525-545.
attler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D. 2004. Vitamin E is essential for seed longevity, and for preventing lipid peroxidation during germination. Plant Cell,16(6): 14191432. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A. 2012. Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ., 35(2): 334-346.
Shanmugam V, Tsednee M, Yeh KC. 2012. Zinc tolerance induced by iron 1reveals the importance of glutathione in the crosshomeostasis between zinc and iron in Arabidopsis thaliana. Plant J., 69(6): 1006 1017.
Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. 2002. Regulation and function of ascorbate peroxidase isoenzymes, J. Exp. Bot., 53(372): 13051319.
Siedlecka A, Krupa Z, Samuelsson G, Oquist G, Gardestrom P. 1997. Primary carbon metabolism in Phaseolus vulgaris plants under Cd/ Fe interaction. Plant Physiol. Biochem., 35: 951-957.
Sinhal VK. 2007. Phytotoxic and cytogenetic effects of Zn 2+ and Pb2+ in Vicia faba. Poll. Res., 26(3): 417-420.
Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S. 2008. Cadmium induced transcriptional and enzymatic alterations related to oxidative stress. Environ. Exp. Bot.., 63(1-3): 18.
Smirnoff N. 1996. Botanical Briefing: The function and metabolism of ascorbic acid in plants. Ann. Bot., 78(6): 661669. [DOI via Crossref]   
Sokal RR, Rohlf FJ. 1995. Biometry: the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman, pp. 321-356.
Tatiana Z, Yamashita K, Matsumoto H. 1999. Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol., 40(3): 273280.
Tawaha K, Alali FQ, Gharaibeh M, Mohammad M, ElElimat T. 2007. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem., 104(4): 13721378.
Vallee BLM, Falchuk KH. 1993. The biochemical basis of zinc physiology. Physiol. Rev.,73(1): 79-118.
Velikova V, Yordanov I, Edreva A. 2000.Oxidative stress and some antioxidant systems in acid-treated bean plants: Protective role of exogenous polyamines. Plant Sci.,151(1): 5966. [DOI via Crossref]   
Vig K, Megharaj M, Sethunathan N, Naidu R. 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv. Environ. Res., 8(1): 121-135. [DOI via Crossref]   
Vit籀ria AP, Lea PJ, Azevedo RA. 2001.Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry, 57(5): 701-710. [DOI via Crossref]   
Wang L, Zhou Q, Ding L, Sun Y. 2008. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyper accumulator. J. Hazard. Mater., 154(1-3): 818-825.
Wojcik M, Tukiendorf A. 2011. Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol. Plant., 55(1): 125132.
Xiang C, Werner BL, Christensen EM, Oliver DJ. 2001. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol., 126(2): 564574.
Zago MP, Oteiza PI. 2001. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radic. Biol. Med., 31(2): 266-274.
Zhang CH, Ge Y. 2008. Response of glutathione and glutathione s-transferase inrice seedlings exposed to cadmium stress. Rice Sci., 15(1): 7376.
Zhang J, Kirkham MB. 1996. Enzymatic responses of the ascorbateglutathione cycle to drought in sorghum and sunflower plants. Plant Sci., 113: 139 147.
Zhou WB, Philippe J, Qiu BS. 2006. Growth and photosynthetic responses of the bloomforming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium. Chemosphere, 65(10): 1738-1746. [DOI via Crossref]    [Pubmed]   
Zhou WB, Qiu BS. 2005. Effects of cadmium hyper accumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci., 169: 737-745.

This Article Cited By the following articles

Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants
Environ Sci Pollut Res 2017; (): .

1
 
How to Cite this Article
Pubmed Style

Amel A. Tammam, Maysa M. Hatata, Ola A. Sadek. EFFECT OF CD AND ZN INTERACTION ON REACTIVE OXYGEN SPECIES AND ANTIOXIDANT MACHINERY OF BROAD BEAN PLANTS (VICIA FABA L). Egypt. J. Exp. Biol. (Bot.). 2016; 12(2): 193-209. doi:10.5455/egyjebb.20160819020621


Web Style

Amel A. Tammam, Maysa M. Hatata, Ola A. Sadek. EFFECT OF CD AND ZN INTERACTION ON REACTIVE OXYGEN SPECIES AND ANTIOXIDANT MACHINERY OF BROAD BEAN PLANTS (VICIA FABA L). http://www.egyseb.net//?mno=245158 [Access: November 03, 2020]. doi:10.5455/egyjebb.20160819020621


AMA (American Medical Association) Style

Amel A. Tammam, Maysa M. Hatata, Ola A. Sadek. EFFECT OF CD AND ZN INTERACTION ON REACTIVE OXYGEN SPECIES AND ANTIOXIDANT MACHINERY OF BROAD BEAN PLANTS (VICIA FABA L). Egypt. J. Exp. Biol. (Bot.). 2016; 12(2): 193-209. doi:10.5455/egyjebb.20160819020621



Vancouver/ICMJE Style

Amel A. Tammam, Maysa M. Hatata, Ola A. Sadek. EFFECT OF CD AND ZN INTERACTION ON REACTIVE OXYGEN SPECIES AND ANTIOXIDANT MACHINERY OF BROAD BEAN PLANTS (VICIA FABA L). Egypt. J. Exp. Biol. (Bot.). (2016), [cited November 03, 2020]; 12(2): 193-209. doi:10.5455/egyjebb.20160819020621



Harvard Style

Amel A. Tammam, Maysa M. Hatata, Ola A. Sadek (2016) EFFECT OF CD AND ZN INTERACTION ON REACTIVE OXYGEN SPECIES AND ANTIOXIDANT MACHINERY OF BROAD BEAN PLANTS (VICIA FABA L). Egypt. J. Exp. Biol. (Bot.), 12 (2), 193-209. doi:10.5455/egyjebb.20160819020621



Turabian Style

Amel A. Tammam, Maysa M. Hatata, Ola A. Sadek. 2016. EFFECT OF CD AND ZN INTERACTION ON REACTIVE OXYGEN SPECIES AND ANTIOXIDANT MACHINERY OF BROAD BEAN PLANTS (VICIA FABA L). THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany), 12 (2), 193-209. doi:10.5455/egyjebb.20160819020621



Chicago Style

Amel A. Tammam, Maysa M. Hatata, Ola A. Sadek. "EFFECT OF CD AND ZN INTERACTION ON REACTIVE OXYGEN SPECIES AND ANTIOXIDANT MACHINERY OF BROAD BEAN PLANTS (VICIA FABA L)." THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany) 12 (2016), 193-209. doi:10.5455/egyjebb.20160819020621



MLA (The Modern Language Association) Style

Amel A. Tammam, Maysa M. Hatata, Ola A. Sadek. "EFFECT OF CD AND ZN INTERACTION ON REACTIVE OXYGEN SPECIES AND ANTIOXIDANT MACHINERY OF BROAD BEAN PLANTS (VICIA FABA L)." THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany) 12.2 (2016), 193-209. Print. doi:10.5455/egyjebb.20160819020621



APA (American Psychological Association) Style

Amel A. Tammam, Maysa M. Hatata, Ola A. Sadek (2016) EFFECT OF CD AND ZN INTERACTION ON REACTIVE OXYGEN SPECIES AND ANTIOXIDANT MACHINERY OF BROAD BEAN PLANTS (VICIA FABA L). THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany), 12 (2), 193-209. doi:10.5455/egyjebb.20160819020621