E-ISSN 2090-0503 | ISSN 1687-7497
 

Original Research 


MOLECULAR AND PHYSIOLOGICAL CHANGES IN MYCORRHIZAL Zea mays L. UNDER DIFFERENT IRRIGATION LEVELS.

Nelly. M. George, Lamis D. Shaaban.

Abstract
Vesicular-arbuscular mycorrhizal fungi (VAM) symbiosis can protect host plant against detrimental effects caused by drought stress. The present investigation was designed to evaluate the effect of VAM on the Zea mays L. grown under water stress conditions. The effects of both water stress and VAM on lipid peroxidation, nucleic acids content, soluble protein content, gene expression, antioxidant enzymes activities and isozymes (Peroxidase and Polyphenoloxidase) variations were investigated. The contents of leaves soluble protein and nucleic acids were higher in mycorrhizal than non-mycorrhizal plants, while lipid peroxidation recorded lower values in root and leaf. From the electrophoretic analysis, the treatments showed alterations in the leaf storage protein patterns. The activity of catalase, peroxidase and polyphenoloxidase was significantly increased in the VAM maize plants through the drought. A reliable change on the expression levels of peroxidase and polyphenoloxidase was observed, that directly correlates with the emerging and intensity of protein bands on SDS-PAGE. The use of VAM appears to be a suitable practice to improve the crop performances under low water availability.

Key words: Drought, Maize, VAM, Leaf protein electrophoresis, Lipid peroxidation, Isozyme, Antioxidant enzymes.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Nelly. M. George
Articles by Lamis D. Shaaban
on Google
on Google Scholar

REFERENCES
Aebi H. 1984. Catalase in vitro. Methods Enzymol., 105: 121-126 [DOI via Crossref]   
Agarwal S, Pandey V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol. Plantarum, 48(4): 555–560. [DOI via Crossref]   
Al-Karaki GN, Clark RB. 1999. Varied rates of mycorrhizal inoculum on growth and nutrient acquisition by barley grown with drought stress. J. Nutr., 22(11): 1775-1784. [DOI via Crossref]   
Auge RM. 2001. Water relation, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1): 3-42. [DOI via Crossref]   
Bohnert HJ, Neson DE, Jensen RG. 1995. Adaptations to environmental stresses. Plant Cell, 7(7): 1099-1111. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
Bonfante P, Genre A. 2008. Plants and arbuscular mycorrhizal fungi an evolutionary-developmental perspective. Trend plant sci., 13(9): 492-498.
Borde M, Dudhane M, Jite P. 2012. Growth, water use efficiency and antioxidant defense responses of mycorrhizal and non-mycorrhizal Allium sativumL L. under drought stress condition. Ann. plant Sci., 1(1): 6-11.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254. [DOI via Crossref]   
Bray DE. 1997. Plant responses to water deficit. Trends Plant Sci., 2(2): 48-54. [DOI via Crossref]   
Chen WP, Li PH, Chen TH. 2000. Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ., 23(6): 609-618 [DOI via Crossref]   
Dassi B, Dumas-Gaudot E, Asselin A, Richard C, Gianinazzi S. 1996. Chitinase and β 1-3 glucanase isoforms expressed in pea roots inoculated with arbuscular mycorrhizal or pathogenic fungi. Eur. J. Plant Pathol., 102(1): 105-108. [DOI via Crossref]   
Davis BJ. 1964. Disc electrophoresis Methods and application to human serum proteins. Ann. NY. Acad. Sci., 121: 404-427. [DOI via Crossref]    [Pubmed]   
De Britto AJ, Benjamin JR, Herin DS, Santhana Jency GS. 2011. Drought Stress and Its Impact on Protein in Three Species of Vitex. J. Stress Physiol. Biochem., 7(3): 152-158.
Dell' Amico J, Torrecillas A, Rodriguez P, Morte A, Sanchez- Balnco MJ. 2002. Responses of tomato plants associated with arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. J. Agr. Sci., 138(4): 387-393.
Devi P. 2000. Principles and methods in plant molecular biology, biochemistry and genetics. Agrobios, India, 57- 59.
Dhindsa RS, Plumb-Dhinase P, Thorpe TA. 1981. Leaf senescence: Correlation with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot., 32(1): 96-101. [DOI via Crossref]   
Dumas-Gaudot E, Asselin E, Gianinzzi-Pearson V, Gollotte A, Gianinzzi S. 1996. Chitinase isoforms in roots of various pea genotypes infected with arbuscular mycorrhizal fungi. Plant Sci., 99: 27-32. [DOI via Crossref]   
Estrella-Vera R, Higgins VJ, Blumwald E. 1993. Specific oxidases and peroxidases are involved in the reaction of tomato to race specific elicitors of Cladosporium fulvum. Abstract of VI Cong. Plant Pathol., 12(22): 228-226.
Fountain JC, Chen ZY, Scully BT, Kemerait RC, Lee RD, Guo B. 2010. Pathogenesis-related gene expressions in different maize genotypes under drought stressed conditions. Afr. J. Plant Sci., 4(11): 433-440.
Gerdemann JW, Nicolson TH. 1963. Spores of mycorrhizal Endogen species extracted form soil by wet sieving and decanting. Trans. Br. Mycol. Soc., 46(2): 235-244. [DOI via Crossref]   
Gianinazzi-Pearsn V, Gianinazzi S. 1989. Cellular and genetic aspects of interactions between host and fungal symbionts in mycorrhizae. Genome, 31: 336- 342. [DOI via Crossref]   
Hao Z, Christie P, Quin L, Wan C, Li X. 2005. Control of Fusarium with wilt of cucumber seedlings by inoculation with an arbuscular mycorrhizal fungus. J. Plant Nutr., 28(11): 1961-1974. [DOI via Crossref]   
Haripriya M, Vijaya T, Mouli KC. 2010. Effect of water stress on growth, metabolic activity of Withaniasomnifera. An important phyyoceutical plant: ameliorative effects of VAM. Int. J. Global Pharma. Technol., 2(3): 112-116.
Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: Kinetics andstoichiometry of fatty acid peroxidase. Arch. Biochem. Biophys., 125(1): 189-198. [DOI via Crossref]   
Hemeda HM, Klein BP. 1990. Effect of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J. Food Sci., 55(1): 184-185. [DOI via Crossref]   
Huang LL, Yang C, Zhao Y, Xu X, Xu Q, Li GZ, Cao J, Herbert SJ, Hao L. 2008. Antioxidant defenses of mycorrhizal fungus infection against SO2- induced oxidative stress in Avenanuda seedlings. Bull. Environ. Contam. Toxicol., 81(5): 440-444. [DOI via Crossref]    [Pubmed]   
Jiang M, Zhang J. 2001. Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol., 42(11): 1265–1273. [DOI via Crossref]    [Pubmed]   
Laemmli UK. 1970. Cleavage of structural proteins during assembly of head bacteriophage T4. Nature, 227(5259): 680-685. [DOI via Crossref]    [Pubmed]   
Malusà E, Sala G, Chitarra W, Bardi L. 2013. Improvement of response to low water availability in maize plants inoculated with selected Rhizospheric microbial consortia under different irrigation regimes. Int. J. Environ. Qual., 12: 13-21.
Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7(9): 405-410. [DOI via Crossref]   
Nguyen TB, Ketsa S, Doorn WG. 2003. Relationship between browning and the activities of polyphenol oxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Boil. Tech., 30(2): 187-193. [DOI via Crossref]   
Ramesh C, Chellappan P, Mahadevan A. 2000. Comparison of protein profiles and enzymes in non-mycorrhizal and mycorrhizal roots of Pennisetu mpedicellatum. Indian J. Exp. Biol., 38: 483-487. [Pubmed]   
Roldán A, Díaz-Vivancos P, Hernández JA, Carrasco L, Caravaca F. 2008. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil. J. Plant Physiol., 165(7): 715-722. [DOI via Crossref]    [Pubmed]   
Ruiz-Sánchez M, Aroca R, Mu-oz Y, Polón R, Ruiz-Lozano JM. 2010. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J. Plant Physiol., 167(11): 862-869. [DOI via Crossref]    [Pubmed]   
Sadasivam S, Manickam A. 1996. Biochemical methods. 2nd ed. New Age International Limited Publishers, New Delhi, Indian, pp. 159- 160.
Sen A, Alikamanoglu S. 2012. Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers. Mutat. Res., 738-739: 38-44. [DOI via Crossref]    [Pubmed]   
Serraj R, Sinclair TR. 2002. Osmoles accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ., 25(2): 333-341. [DOI via Crossref]    [Pubmed]   
Shiri M, Aliyev RT, Choukan R. 2010. Water stress effects on combining ability and gene action tolerance indices in maize. Res. J. Environ. Sci., 4: 75-84. [DOI via Crossref]   
Smirnoff N. 1998. Plant resistance to environmental stress. Curr. Opin. Biotechnol., 9(2): 214–219. [DOI via Crossref]   
Subramanian KS, Charest C. 1998. Influence of arbuscular mycorrhiza on the metabolism of maize under drought stress. Mycorrhiza, 5: 273-278. [DOI via Crossref]   
Vijaya T, Devamma MN, Nirmala C. 2008. Response of VAM treated Acorus calamus L. to water stress. Bioscan, 3(4): 437-440.
Weisany W, Sohrabi Y, Heidari G, Siosemardeh K, Ghassemi-Golezani K. 2012. Change in antioxidant enzymes activity and plant performance antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics J., 5(2): 60-67.
Wu Q, Zou YN. 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant soil Environ., 55(10): 436-442.

How to Cite this Article
Pubmed Style

Nelly. M. George , Lamis D. Shaaban. MOLECULAR AND PHYSIOLOGICAL CHANGES IN MYCORRHIZAL Zea mays L. UNDER DIFFERENT IRRIGATION LEVELS.. Egypt. J. Exp. Biol. (Bot.). 2015; 11(1): 1-9.


Web Style

Nelly. M. George , Lamis D. Shaaban. MOLECULAR AND PHYSIOLOGICAL CHANGES IN MYCORRHIZAL Zea mays L. UNDER DIFFERENT IRRIGATION LEVELS.. https://www.egyseb.net//?mno=186050 [Access: April 05, 2022].


AMA (American Medical Association) Style

Nelly. M. George , Lamis D. Shaaban. MOLECULAR AND PHYSIOLOGICAL CHANGES IN MYCORRHIZAL Zea mays L. UNDER DIFFERENT IRRIGATION LEVELS.. Egypt. J. Exp. Biol. (Bot.). 2015; 11(1): 1-9.



Vancouver/ICMJE Style

Nelly. M. George , Lamis D. Shaaban. MOLECULAR AND PHYSIOLOGICAL CHANGES IN MYCORRHIZAL Zea mays L. UNDER DIFFERENT IRRIGATION LEVELS.. Egypt. J. Exp. Biol. (Bot.). (2015), [cited April 05, 2022]; 11(1): 1-9.



Harvard Style

Nelly. M. George , Lamis D. Shaaban (2015) MOLECULAR AND PHYSIOLOGICAL CHANGES IN MYCORRHIZAL Zea mays L. UNDER DIFFERENT IRRIGATION LEVELS.. Egypt. J. Exp. Biol. (Bot.), 11 (1), 1-9.



Turabian Style

Nelly. M. George , Lamis D. Shaaban. 2015. MOLECULAR AND PHYSIOLOGICAL CHANGES IN MYCORRHIZAL Zea mays L. UNDER DIFFERENT IRRIGATION LEVELS.. THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany), 11 (1), 1-9.



Chicago Style

Nelly. M. George , Lamis D. Shaaban. "MOLECULAR AND PHYSIOLOGICAL CHANGES IN MYCORRHIZAL Zea mays L. UNDER DIFFERENT IRRIGATION LEVELS.." THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany) 11 (2015), 1-9.



MLA (The Modern Language Association) Style

Nelly. M. George , Lamis D. Shaaban. "MOLECULAR AND PHYSIOLOGICAL CHANGES IN MYCORRHIZAL Zea mays L. UNDER DIFFERENT IRRIGATION LEVELS.." THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany) 11.1 (2015), 1-9. Print.



APA (American Psychological Association) Style

Nelly. M. George , Lamis D. Shaaban (2015) MOLECULAR AND PHYSIOLOGICAL CHANGES IN MYCORRHIZAL Zea mays L. UNDER DIFFERENT IRRIGATION LEVELS.. THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany), 11 (1), 1-9.